Test

Wichtig: \heartsuit Bitte nur die Vorderseite eines Blattes beschreiben.

- A Resultate sind gut sichtbar zu unterstreichen.
- ♠ Nur gut leserliche, sauber gegliederte Lösungen mit sofort auffindbaren Resultaten können korrigiert werden.
- ♦ Die einzelnen Aufgaben sind durch einen Strich zu trennen.
- ♡ Alle Teilaufgaben geben gleich viele Punkte.
- **Probl. 1** Löse die folgende Matrixgleichung (X = ?) unter der Annahme, dass alle Matrizen regulär sind:

$$M \cdot (E - X) \cdot M^{-1} + M - A \cdot M = A \cdot M^{T} - 3M$$

- **Probl. 2** Gegeben ist eine Gerade $g: \vec{v}(t) = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Berechne den Abstand des Punktes Q(3; 10; 14) von g.
- **Probl. 3** Gegeben ist eine Ebene Φ : $\vec{v}(\lambda, \mu) = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$.
 - (a) Berechne den Abstand des Punktes Q(3; 10; 14) von Φ .
 - (b) Berechne den Lotfusspunkt von Q auf Φ .
- Probl. 4 Gegeben sind die vier Punkte $P_1(1;1;0)$, $P_2(-1;2;2)$, $P_3(-3;-2;3)$, $P_4(1;1;4)$. Dadurch ist ein Streckenzug mit den Seitenvektoren P_1P_2 , P_2P_3 , P_3P_4 definiert. In P_4 wird nun der Pfeil $\frac{1}{2}$ $\stackrel{\longrightarrow}{P_1P_2}$ angefügt. Dadurch erhält man den Punkt P_5 . In P_5 setzt man dann den Pfeil $\frac{1}{2}$ $\stackrel{\longrightarrow}{P_2P_3}$ an, wodurch P_6 erhalten wird. In P_6 setzt man dann den Pfeil $\frac{1}{2}$ $\stackrel{\longrightarrow}{P_3P_4}$ an, wodurch P_7 erhalten wird. Genauso verfahren wir nun von P_7 weg mit den Pfeilen $(\frac{1}{2})^2$ $\stackrel{\longrightarrow}{P_1P_2}$, $(\frac{1}{2})^2$ $\stackrel{\longrightarrow}{P_2P_3}$, $(\frac{1}{2})^2$ $\stackrel{\longrightarrow}{P_3P_4}$, womit wir P_8 , P_9 , P_{10} erhalten. Von P_{10} geht es nun in der selben Art mit $(\frac{1}{2})^3$ $\stackrel{\longrightarrow}{P_1P_2}$, $(\frac{1}{2})^3$ $\stackrel{\longrightarrow}{P_2P_3}$, $(\frac{1}{2})^3$ $\stackrel{\longrightarrow}{P_2P_3}$, $(\frac{1}{2})^3$ $\stackrel{\longrightarrow}{P_3P_4}$ weiter und so fort. Zu welchem Punkt gelangt man, wenn man schliesslich bis und mit den Pfeilen $(\frac{1}{2})^{99}$ $\stackrel{\longrightarrow}{P_1P_2}$, $(\frac{1}{2})^{99}$ $\stackrel{\longrightarrow}{P_2P_3}$, $(\frac{1}{2})^{99}$ $\stackrel{\longrightarrow}{P_3P_4}$ ansetzt?
- Probl. 5 Gegeben ist das Gleichungssystem

$$x + y + z = 1$$

$$x - y + z = 1$$

$$x - y - z = 0$$

Demonstriere damit den Gauss-Jordan-Algorithmus und finde die Lösung!

- **Probl. 6** Gegeben sind die Matrizen $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ und $B = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. Berechne $(B^{-1} \cdot A^{-1})^T$.
- **Probl. 7** Gegeben ist die Matrix $M = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$.

Bilde den Punkt $P_0(4;7)$ mittles M ab (Vektor OP_0 abbilden). Drehe dann den Bildpunkt P_1 um $+32^o$ um den Ursprung. Bilde danach den durch die Drehung erhaltenen Bildpunkt P_2 nochmals mittels M ab. Berechne damit den Bildpunkt P_3 der gesamten Abbildung.

- **Probl. 8** Gegeben ist ein Dreieck durch die Punkte $P_1(1;1;0)$, $P_2(1;0;2)$, $P_3(0;2;3)$. Damit ist eine Ebene Φ definiert. Vom Ursprung aus zieht man einen Strahl g durch den Schwerpunkt S des Dreiecks. Gesucht ist ein Punkt P_4 auf g, welcher nicht auf der selben Seite von Φ wie der Ursprung liegt, sodass die durch $\triangle P_1 P_2 P_4$, $\triangle P_2 P_3 P_4$ und $\triangle P_3 P_1 P_4$ definierte Oberfläche einen zweimal so grossen Inhalt hat wie das Dreieck $\triangle P_1 P_2 P_3$.
- Probl. 9 Gegeben sind die Geraden

$$g_1: \vec{v}_1(t_1) = \begin{pmatrix} 1\\2\\-1 \end{pmatrix} + t_1 \begin{pmatrix} 2\\1\\1 \end{pmatrix} \text{ und } g_2: \vec{v}_2(t_2) = \begin{pmatrix} -1\\1\\3 \end{pmatrix} + t_2 \begin{pmatrix} 3\\-1\\2 \end{pmatrix}.$$

- (a) Stelle fest, ob die beiden Geraden windschief sind.
- (b) Berechne allenfalls ihren Abstand.
- **Probl. 10** Gegeben ist eine Kugel mit dem Radius r=2 um den Ursprung. An die Kugel wird eine Tangentialebene gelegt, welche die Achsen des Koordinatensystems in den Punkten $x_0=a,\ y_0=a,\ z_0=a$ mit a>0 schneidet.
 - (a) Berechne a.
 - (b) Berechne die Koordinaten des Tangentialpunktes T auf der Kugel.
 - (c) Berechne die Winkel zwischen der Geraden \overline{OT} und den Koordinatenachsen.

Viel Glück!