Test

Wichtig: \heartsuit Bitte nur die Vorderseite eines Blattes beschreiben.

- A Resultate sind gut sichtbar zu unterstreichen.
- ♠ Nur gut leserliche, sauber gegliederte Lösungen mit sofort auffindbaren Resultaten können korrigiert werden. (Ersichtlicher Lösungsweg!)
- ♦ Die einzelnen Aufgaben sind durch einen Strich zu trennen.
- \heartsuit Alle lösbaren Teilaufgaben geben gleich viele Punkte.
- ♠ Unlösbare Aufgaben sind zu kommentieren.
- ♣ Dokumentechtes Schreibzeug!

Diverses aus Vektor- und Matrizenrechnung sowie Eigenwerttheorie

Probl. 1 Gegeben ist eine Gerade
$$g: \vec{v}(t) = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$
. Berechne den Abstand des Punktes $Q(3; 10; 14)$ von g .

Probl. 2 Gegeben ist eine Ebene
$$\Phi: \vec{v}(\lambda, \mu) = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

- (a) Berechne den Abstand des Punktes Q(3; 10; 14) von Φ .
- (b) Berechne den Lotfusspunkt von Q auf Φ .

Probl. 3 Gegeben ist die Matrix
$$M = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
.

- (a) Berechne die Eigenwerte von M.
- (b) Berechne die Eigenvektoren von M in der normierten Form.
- (c) Stelle M dar in der Form $X \cdot D_{\lambda} \cdot X^{-1}$, wobei X aus den Eigenvektoren besteht. D_{λ} ist die Diagonalmatrix mit den Eigenwerten in der Diagonalen.
- (d) Berechne die Eigenwerte von D_{λ} . Was stellt man fest?
- (e) Berechne die Eigenvektoren von D_{λ} . Was stellt man fest?
- (f) Skizziere die Geraden, welche gegeben sind durch die Eigenvektoren von M und den Ursprung. Schreibe für jede Gerade eine Parametergleichung auf.
- (g) Bilde die eben betrachteten Gerade mit M ab. Was stellt man fest?
- (h) Bilde die eben betrachteten, durch die Eigenvektoren von M und den Ursprung gegebenen Gerade mit Hilfe von D_{λ} ab. Decken sich die nun erhaltenen Geraden mit den in der vorhergehenden Teilaufgabe gewonnenen Geraden?
- (i) Berechne die Matrix $M\cdot M:=M^2=X\cdot D_\lambda\cdot X^{-1}\cdot X\cdot D_\lambda\cdot X^{-1}=\dots$
- (j) Berechne mit Hilfe des eben entdeckten Tricks die Matrix M^{50} .

Probl. 4 Gegeben sind die drei Vektoren
$$\vec{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \vec{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ \vec{a}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Dazu ist A diejenige Matrix, für welche gilt: $A \cdot \vec{e}_1 = \vec{a}_1$, $A \cdot \vec{e}_2 = \vec{a}_2$, $A \cdot \vec{e}_3 = \vec{a}_3$.

- (a) Berechne die Matrix A.
- (b) Berechne die Eigenwerte von A.
- (c) Berechne die Eigenvektoren von A.
- (d) W_e sei der Einheitswürfel, gegeben durch die Basisvektoren \vec{e}_1 , \vec{e}_2 , \vec{e}_3 . W_e wird durch A in einen Spat Sp abgebildet. Berechne das Volumen V_{Sp} des Spats.
- (e) Berechne die Determinanten von A und von A^{-1} .
- (f) Vergleiche det(A) mit V_{Sp} . Was stellt man fest?
- (g) Berechne das Produkt der Eigenwerte λ_k von A.
- (h) Vergleiche $\prod_{k=1}^{3} \lambda_k$ mit V_{Sp} . Was stellt man fest?
- (i) Berechne das Bild von $s = \sum_{k=1}^{3} \vec{e_k}$ bei der Abbildung durch A.
- (j) Vergleiche s mit $\sum_{k=1}^{3} \vec{a}_k$. Was stellt man fest?

Probl. 5 Gegeben ist die Gerade $g: \vec{v} = t \cdot \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ sowie der Punkte P(10, -1).

- (a) Konstruiere die Spiegelungsmatrix S(g) für die Geradenspiegelung an g.
- (b) Spiegele damit P, d.h. berechne den Bildpunkt P_1 .
- (c) Konstruiere die Drehmatrix $D(\varphi)$ mit $\varphi = +10^{\circ}$.
- (d) Drehe damit P_1 um O, d.h. berechne den Bildpunkt P_2 .
- (e) Spiegele den Punkt P_2 mittels S(g) zurück, d.h. berechne den Bildpunkt P_3 .
- (f) P_4 sei der Punkt, welcher entsteht durch Drehung um O um $\varphi = -10^{\circ}$. Berechne P_4 .
- (g) Ist die Gleichung $P_3 = P_4$ mit den hier erhaltenen Resultaten richtig oder falsch?

Probl. 6 Gegeben sind die Vektoren
$$\vec{a} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}.$$

Diese Vektoren \vec{a} und \vec{b} bilden zusammen mit dem Ursprung O eine Ebene Φ .

- (a) Konstruiere eine Spiegelungsmatrix, mit deren Hilfe man einen Punkt P an Φ spiegeln kann
- (b) Spiegele damit den Punkt $P_0(10, 5, -3)$, d.h. berechne den Bildpunkt P_1 .
- (c) Konstruiere eine Projektionsmatrix, mit Hilfe welcher man einen Punkt P auf Φ projizieren kann. (Überlege dir dazu. wie man jetzt die Eigenwerte wählen muss.)
- (d) Projiziere den Punkt P(10, 10, 20) auf Φ , d.h. berechne den Bildpunkt Q.
- **Probl. 7** Löse die folgende Matrixgleichung (X = ?) unter der Annahme, dass alle Matrizen regulär sind:

$$M \cdot (E - X) \cdot M^{-1} + M - A \cdot M = A \cdot M^T - 2 M$$
 Viel Glück! WIR1