Übungen in lin.Alg.+Geom.

\diamond E+M I / 14 \diamond

Probl. 1 z = 3 + 4i

(a)
$$\bar{z} = ?$$
, $z \cdot \bar{z} = ?$

(b)
$$|z| = ?$$

(c)
$$z^2 = ?$$

(d)
$$\frac{1}{z} = ?$$

Probl. 2 $z_1 = 1 - i, \ z_2 = -1 + 2i$

(a)
$$z_1 \cdot z_2 = ?$$

(b)
$$\frac{z_1}{z_2} = ?$$

(c)
$$\left| \frac{z_1}{z_2} \right| = ?$$

Probl. 3 $z_1 = -1 - i$

(a)
$$z^2 = z_1 \leadsto z = ?$$

(b)
$$z^3 = z_1 \leadsto z = ?$$

(c)
$$z^4 = z_1 \leadsto z = ?$$

(d)
$$z^5 = z_1 \leadsto z = ?$$

Probl. 4 $x^2 + x + 1 = 0, x_{1,2} = ?$

Probl. 5 (a) $z_1 = 2 + i \implies z_1^2, z_1^3, z_1^4 = ?$

(b) $z_2 = \frac{1}{\sqrt{2}} \cdot (1+i) \implies z_2^2, z_2^3, z_2^4 \dots z_2^M = ?$

(e) $z = r \operatorname{cis}(\varphi) = r e^{i\varphi}, r, \varphi = ?$

(f)
$$\frac{1}{|z|} = ?$$

(g)
$$z \cdot \bar{z} = ?$$

$$(h) \ \frac{\bar{z}}{|z|^2} = ?$$

(i)
$$|\bar{z}| = ?$$

(d)
$$\frac{z_1 + z_2}{z_2} = ?$$

(e)
$$\frac{3z_1 + 2z_2}{4z_2} = ?$$

(f)
$$z_1^2 \cdot z_2^3 = ?$$

Skizze!

Skizze!