Ausbau Matrizenrechnung: Eigenwerte und Eigenvektoren

Probl. 1 Gegeben sind:

$$B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

- (a) Berechne die inverse Matrix zu B.
- (b) Berechne $A = B \cdot D \cdot B^{-1}$.
- (c) Berechne die Eigenwerte von A.
- (d) Was fällt auf, wenn man die Eigenwerte von A mit denjenigen von D vergleicht?
- (e) Berechne die Eigenvektoren von A.
- (f) Was fällt auf, wenn man die Eigenvektoren von A mit denjenigen von B vergleicht?

Probl. 2 Gegeben seien:

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 4 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- (a) Berechne B^{-1} .
- (b) Berechne $A = B \cdot D \cdot B^{-1}$.
- (c) Berechne das charakteristische Polynom $P_A(\lambda)$ von A und auch dasjenige von D, welches wir mit $P_D(\lambda)$ bezeichnen. Vergleiche $P_A(\lambda)$ mit $P_D(\lambda)$. Was stellt man fest?
- (d) Berechne die Eigenwerte λ_1 , λ_2 , λ_3 von A und auch diejenigen von D. Vergleiche die Ergebnisse. Was stellt man fest?
 - Stellt man denselben Sachverhalt, der bei den Eigenwerten gilt, auch für die Eigenvektoren von A und D fest?
 - Was ist bemerkenswert an den Eigenvektoren von D?
- (e) Summiere die Eigenwerte von A. Mache dasselbe für die Eigenwerte von D. Vergleiche die Ergebnisse mit dem jeweis 2. Koeffizient des charakteristischen Polynoms (derjenige von λ^2). Was stellt man fest?
- (f) Berechne die Determinante von A und auch diejenige von D. Vergleiche die Werte mit dem Wert des letzten, d.h. des konstanten Koeffizienten des charakteristischen Polynoms. Was stellt man fest?
- (g) Multipliziere die Eigenwerte von A. Mache das gleiche mit den Eigenwerten von D. Vergleiche die Resultate mit der Determinante der jeweiligen Matrix. Was stellt man fest?

- **Probl. 3** Gegeben ist ein Kreis k_1 mit dem Mittelpunkt M(4, 3) und dem Radius r = 2. Dazu sei $P_0(0, 0)$ ein Punkt, den wir als Pol bezeichnen.
 - (a) Berechne die Polare p zu P_0 sowie deren Schnittpunkte mit k_1 . Skizziere alsdann die Situation.
 - (b) Berechne die Tangenten von P_0 aus an k_1 und dazu die Tangentenschnittpunkte mit k_1 . Trage die erhaltenen Punkte in die Skizze ein.
 - (c) Berechne eine Gleichung für die Gerade $g_1 = \overline{P_0 M}$. Berechne damit die Schnittpunkte $g_1 \cap k_1$. Trage die erhaltenen Punkte in die Skizze ein.
 - (d) Berechne einen Punkt P_1 , so dass k_1 der Apolloniuskreis zu $\overline{P_0P_1}$ ist. Trage den erhaltenen Punkt in die Skizze ein. Was fällt an diesem Punkt besonders auf?
 - (e) Gegeben ist ein zweiter Kreis mit dem Mittelpunkt P_0 und dem Radius 3r. Suche zu k_1 und k_2 die Potenzgerade und skizziere die Situation. Was ist das Auffallende an der Lage der Potenzgeraden?
- **Probl. 4** Gegeben ist eine Gerade g durch die Punkte A und B. Weiter kennt man einen Punkt Q. Berechne mit Hilfe der Parametergleichung von g und dem Richtungsvektor den Abstand von Q zu g und den Lotfusspunkt L.

$$A = A(1;3;2), B = B(4;1;3), Q = Q(7;7;7)$$

Hinweis: Benutze die Normalenebene zu g durch Q.

Probl. 5 Gegeben ist eine Ebene Φ durch ihre Koordinatengleichung. Weiter kennt man einen Punkt Q. Berechne den Abstand von Q zu Φ und den Lotfusspunkt L.

$$\Phi: 2x - y + 3z - 1 = 0, Q = Q(7;7;7)$$