Kreis und Ellipse

- **Probl. 1** (a) i. Durch $\vec{v}_0 = r \cdot \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$ mit r=1 ist eine Kurve in Parameterdarstellung gegeben. Skizziere diese Kurve.
 - ii. Durch $\langle \binom{x}{y}, \binom{x}{y} \rangle r^2 = 0$, r = 1, ist eine Kurve durch eine implizite Gleichung gegeben. Skizziere diese Kurve. Was stellt man fest?
 - (b) Sei $D_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.
 - i. Durch $\vec{v}_{1a} = D_1 \cdot \vec{v}_0$ mit r=1 ist eine Kurve in Parameterdarstellung gegeben. Skizziere diese Kurve.
 - ii. Durch $\vec{v}_{1b} = D_1^{-1} \cdot \vec{v}_0$ mit r=1 ist eine Kurve in Parameterdarstellung gegeben. Skizziere diese Kurve. Was stellt man fest?
 - iii. Durch $\langle (D_1 \cdot \binom{x}{y}), (D_1 \cdot \binom{x}{y}) \rangle r^2 = 0, \quad r = 1$, ist eine Kurve durch eine implizite Gleichung gegeben. Skizziere diese Kurve. Was stellt man fest?
 - (c) Sei $\varphi = \frac{\pi}{6}$, $\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$.
 - i. Durch $\vec{v}_{3a} = M \cdot \vec{v}_{2a}$ mit r=1 ist eine Kurve in Parameterdarstellung gegeben. Skizziere diese Kurve.
 - Berechne auch die Eigenwerte und Eigenvektoren der Matrix $M \cdot D_1$.
 - ii. Durch $\vec{v}_{3b} = M^{-1} \cdot \vec{v}_{2b}$ mit r=1 ist eine Kurve in Parameterdarstellung gegeben. Skizziere diese Kurve. Was stellt man fest? Berechne auch die Eigenwerte und Eigenvektoren der Matrix $(M \cdot D_1)^{-1}$.
 - iii. Durch $\langle (D_1 \cdot M \cdot \begin{pmatrix} x \\ y \end{pmatrix}), (D_1 \cdot M \cdot \begin{pmatrix} x \\ y \end{pmatrix}) \rangle r^2 = 0, \ r = 1$, ist eine Kurve durch eine implizite Gleichung gegeben. Skizziere diese Kurve. Was stellt man fest?