Eigenwertprobleme: Inverse, Transponierte, Diagonalisierung

Probl. 1 (a) Sei
$$\lambda_1 = 1$$
, $\lambda_2 = -1$, $\lambda_3 = 3$, $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

- i. Bilde $X = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$.
- ii. Berechne det(X). Ist $\vec{v}_1, \vec{v}_2, \vec{v}_3$ l.u.?
- iii. Bilde $D_{\lambda} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$ und berechne damit $A = X \cdot D_{\lambda} \cdot X^{-1}$.
- iv. Berechne Eigenwerte und Eigenvektoren von A. Vergleiche mit den eingangs gegebenen Werten.
- v. Vergleiche $\det(A)$ mit $\det(D_{\lambda})$.
- (b) Sei $A_1 = A^{-1}$.
 - i. Berechne A_1 .
 - ii. Berechne Eigenwerte und Eigenvektoren von A_1 . Vergleiche mit den eingangs gegebenen Werten.
 - iii. Vergleiche $\det(A_1)$ mit $\det(D_{\lambda}^{-1})$.
- (c) Sei $A_2 = A^T$.
 - i. Berechne A_2 .
 - ii. Berechne Eigenwerte und Eigenvektoren von A_2 . Vergleiche mit den eingangs gegebenen Werten.
 - iii. Vergleiche $det(A_2)$ mit $det(D_{\lambda})$.

Probl. 2 (a) Sei
$$\lambda_1 = 1$$
, $\lambda_2 = -1$, $\lambda_3 = 3$, $\vec{v}_1 = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

- i. Bilde $Y = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$.
- ii. Berechne det(Y). Ist $\vec{v}_1, \vec{v}_2, \vec{v}_3$ l.u.?
- iii. Bilde $E_{\lambda}=\left(egin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{array} \right)$ und berechne damit $B=Y\cdot E_{\lambda}\cdot Y^{-1}.$
- iv. Berechne Eigenwerte und Eigenvektoren von B. Vergleiche mit den eingangs gegebenen Werten.
- v. Vergleiche det(B) mit $det(E_{\lambda})$.
- (b) Sei $B_1 = B^{-1}$.
 - i. Berechne B_1 .
 - ii. Berechne Eigenwerte und Eigenvektoren von B_1 . Vergleiche mit den eingangs gegebenen Werten.

- iii. Vergleiche $\det(B_1)$ mit $\det(E_{\lambda}^{-1})$.
- (c) Sei $B_2 = B^T$.
 - i. Berechne B_2 .
 - ii. Berechne Eigenwerte und Eigenvektoren von B_2 . Vergleiche mit den eingangs gegebenen Werten.
 - iii. Vergleiche $\det(B_2)$ mit $\det(E_\lambda).$