Übungen in Analysis

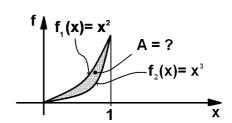
♦ E+M 2 01 ♦

Probl. 1 Berechne den Flächeninhalt zwischen der Kurve $f(x) = x^2$ und der x-Achse über dem Intervall [0,1] mit Hilfe eines Grenzwertes von Obersummen oder Untersummen und mit Hilfe eines Computers.

Vergleiche das Resultat mit dem bekannten Resultat (mittels der Stammfunktion, vgl. Vorlesung)

- **Probl. 2** Berechne den Flächeninhalt zwischen der Kurve $f(x) = e^{-x^2}$ und der x-Achse über dem Intervall [-2,2]:
 - (a) Mit Hilfe von Obersummen oder Untersummen und mit Hilfe eines Computers.
 - (b) Mit Hilfe einer Potenzreihe und mit Hilfe eines Computers.
- Probl. 3 Berechne die Stammfunktionen:

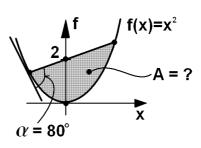
(a)
$$f(x) = x^{100} - x^{99}$$


(b)
$$f(x) = e^{-x} - \cos(x) + \cos^2(x) + \sin^2(x) - \frac{1}{x^2}$$

(c)
$$f(x) = \cosh(x) - \sinh(x)$$

(d)
$$f(x) = \sqrt[3]{(x)}$$

(e) $f(x) = \frac{1}{x^2 - 1}$ (Hinweis: Zerlege den Bruch zuerst in zwei einfachere Brüche!)


Probl. 4 Berechne den in der Skizze angegenenen Flächeninhalt:

Fortsetzug Rückseite %

Probl. 5 (a)
$$f(x) = x \cdot \sin(x^2)$$
 $F(x) = ?$, $\int_{1}^{2} f(x) dx ?$ (b) $f(x) = \cosh(x)$ $F(x) = ?$, $\int_{-1}^{1} f(x) dx ?$ (c) $f(x) = -8x^3 + 4x^2 - 3x + 1 - \frac{2}{x}$ $F(x) = ?$, $\int_{1}^{1} f(x) dx ?$ (d) $f(x) = \sin^2(4x - 7) + \cos^2(4x - 7)$ $F(x) = ?$, $\int_{1}^{2} f(x) dx ?$ (e) $f(x) = \frac{1}{\cos^2(x)}$ $F(x) = \cos(\omega x + \varphi)$ $F(x) = ?$, $\int_{1}^{2} f(x) dx ?$ (f) $f(x) = \cos(\omega x + \varphi)$ $F(x) = ?$, $\int_{1}^{2} f(x) dx ?$ $F(x) = ?$, $\int_{1}^{2} f(x) dx ?$ (h) $f(x) = \frac{1}{2x - 3} - 10x^{20} + x^{40}$ $F(x) = ?$, $\int_{1}^{2} f(x) dx ?$

Probl. 6 Berechne den Inhalt der in der Figur gezeigten Fäche.

Probl. 7 (a)
$$\int_{3}^{t} x^{5} dx = F(t)$$
 $F(t) = 10 \Rightarrow t = ?$
(b) $\int_{4}^{6} \frac{1}{2x+1} dx = ?$
(c) $\int_{0}^{\pi} x^{2} \cdot \sin(x) dx = ?$
(d) $\int_{2}^{4} \frac{1}{4x^{2}-1} dx = ?$
(e) $\int_{-4}^{4} x^{5} \cos(x) dx = ?$
(f) $\int_{-4}^{\pi} x^{2} \cos(4x^{3}+5) dx = ?$
(g) $\int_{0}^{\pi} \cos(x) \cdot e^{\sin(x)} dx = ?$