Probl. 1 Berechne die Längen der Kurven und skizziere die Kurven:

(a)
$$f(x) = x^2, x \in [-1, 1]$$

(b)
$$f(x) = e^x$$
, $x \in [0, 100]$

(c)
$$f(x) = \sin(x), x \in [0, 2\pi]$$

Probl. 2 Berechne die Flächeninhalte unter den folgenden Kurven in Polaarkordianten und skizziere die Kurven:

(a)
$$r(\varphi) = e^{\varphi}, \ \varphi \in [0, 2\pi]$$

(b)
$$r(\varphi) = \ln(\varphi), \ \varphi \in [0, 2\pi]$$

(c)
$$r(\varphi) = \frac{1}{1 + \varphi^2}, \ \varphi \in [0, \frac{\pi}{2}]$$

Probl. 3 Berechne die Längen der Kurven in Polaarkordianten:

(a)
$$r(\varphi) = e^{\varphi}, \ \varphi \in [0, 2\pi]$$

(b)
$$r(\varphi) = \ln(\varphi), \ \varphi \in [0, 2\pi]$$

(c)
$$r(\varphi) = \frac{1}{1 + \varphi^2}, \ \varphi \in [0, \frac{\pi}{2}]$$

Probl. 4 Die folgenden Kurven werden um die x-Achse rotiert. Berechne den Volumeninhalt der entstehenden Rotationskörper:

(a)
$$f(x) = x^2$$
, $x \in [-1, 1]$

(b)
$$f(x) = e^x$$
, $x \in [0, 100]$

(c)
$$f(x) = \sin(x), x \in [0, 1\pi]$$

Probl. 5 Die folgenden Kurven werden um die x-Achse rotiert. Berechne den Oberflächeninhalt der entstehenden Rotationskörper:

(a)
$$f(x) = x^2, x \in [-1, 1]$$

(b)
$$f(x) = e^x$$
, $x \in [0, 100]$

(c)
$$f(x) = \sin(x), x \in [0, 1\pi]$$

- **Probl. 6** (a) Gegeben ist die Kurve $\vec{v}(t) = {t^2 \choose t}$, $t \in I = [-1, 1]$ sowie die Funktion $f(x, y) = x^2 xy y^2$. Berechne das Linienintegral $\int_{T} f(x, y) ds$
 - (b) Gegeben ist die Kurve $\vec{v}(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ 1 \end{pmatrix}$, $t \in I = [0, 2\pi]$ sowie die Funktion $f(x, y, z) = \cos(x^2) + y \cdot z$. Berechne das Linienintegral $\int_I f(x, y) \, ds$
 - (c) Gegeben ist die Kurve $\vec{v}(t)=\begin{pmatrix}t^2\\t\\1\end{pmatrix},\ t\in I=[0,4]$ sowie die Vektorfunktion (Vektorfeld) $\vec{F}(x,y,z)=\begin{pmatrix}x+y\\y+z\\z-x\end{pmatrix}$. Berechne das Linienintegral $\int\limits_I f(x,y)\,d\vec{s}$
 - (d) Gegeben ist die Kurve $\vec{v}(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ 1 \end{pmatrix}, \ t \in I = [0, 2\pi]$ sowie die Vektorfunktion (Vektorfeld) $\vec{F}(x,y,z) = \begin{pmatrix} \cos(x^2) \\ y \cdot z \\ x \end{pmatrix}$. Berechne das Linienintegral $\oint_I f(x,y) \, d\vec{s}$