Gibbs und DFT:

- **Probl. 1** Auf dem Intervall zwischen $-\pi$ und $+\pi$ ist die 2π -periodische Funktion $f(x) = x^2$. Ermittle heuristisch den Overshoot (Gibbs-Phänomen) bei der Fouriereintwicklung!
- **Probl. 2** Generiere eine Serie von Messwerten mittles der Funktion $f(t) = e^{\cos(t)} + \sin^2(t)$, $T = 2\pi$, n = 16, $t_k = k \cdot \frac{2\pi}{n}$, $k = 0, 1, \ldots, n-1$. Berechne mit Hilfe der DFT damit als Approximation an die gegebenen Funktion ein trigonometrisches Polynom. Vergleiche die Graphen der wirklichen Funktion und der Approximation.

Probl. 3 Gegeben sind die Messwerte:

0	1	2	3	4	5	6	7	8	9
0.0	0.309	0.588	0.809	0.951	0.99	0.951	0.809	0.588	0.309

Verwende die DFT, um daraus eine Foureirreihe zu machen. Zeichne die Funktion in das Diagramm der Messwerte ein.

Probl. 4 Gegeben sind die Messwerte:

X	0	.05	1.12	1.6	2.3	2.8	3.0	3.9	4.7	5.4
У	14.2	12.8	12.9	7.4	6.7	9.5	9.8	9.3	10.2	11.5
X	5.6	6.6	6.9	7.3	7.7	8.2	8.5	8.8	9.1	9.9
	0.0	0.0	0.0			~· -	0.0	0.0	0.1	0.0

Verwende die DFT, um daraus eine Foureirreihe zu machen. Zeichne die Funktion in das Diagramm der Messwerte ein.

Problem: Was stellt man fest, das man nicht akzeptieren kann?

Probl. 5 Nimm die Daten der vorherigen Aufgabe, ersetze aber die x-Werte durch

$$k \cdot \frac{2\pi}{n}, \ k = 0, \dots, n - 1.$$

Führe mit diesen Daten die DFT durch. Was stellt man jetzt fest?

- **Probl. 6** (a) Studiere im Skript die FFT!
 - (b) Überlege dir, ob man diese Methode auf eines er beiden obigen Beispiele anwenden könnte.
 - (c) Suche in der Literatur ein Beispiel mit gerechneten Werten für die FFT.
 - (d) Suche auch Befehle in Mathemaitk-Programmen für den Computer, die die FFT anbieten.

WIR1