Diverse Berechnungen:

Probl. 1 Die folgende Funktion hat die Periode T = 4:

$$f(t) = \begin{cases} 0 & t \in [-3, -1) \\ 2 & t \in [-1, 1) \end{cases}$$

- (a) Skizziere die Funktion.
- (b) Entwickle f in eine Fourierreihe $\tilde{f}_n(t)$ von beliebiger Ordnung n. Berechne die Fourierkoeffizienten numerisch in einer Tabelle bis zu n = 50. Was stellt man fest?
- (c) Stelle einen Plot her für n = 10 und n = 50.
- (d) Untersuche die Gleichung $2 = f(0) = \tilde{f}(0)$. Was kann man damit anfangen?
- (e) Überprüfe an dieser Funktion die Gleichung von Parseval.
- (f) Versuche mit Hilfe der letzten Gleichung eine Näherungsformel zur Berechnung von π zu finden und prüfe die Genauigkeit der Berechnung für n=1000.

Probl. 2 Gegeben ist die folgende Funktion:

$$f(\lambda) = \begin{cases} \lambda & \lambda \in [-1, 1) \\ 0 & \lambda \notin [-1, 1) \end{cases}$$

- (a) Skizziere die Funktion.
- (b) Berechne die Fouriertransormierte $F(\Omega)$ von $f(\lambda)$.
- (c) Benutze $F(\Omega)$ zur Berechnung von $\int_{-\infty}^{\infty} \frac{(x\cos(x)\sin(x)-\sin^2(x))}{x^2} dx$

Probl. 3 Kleinprojekt:

Die Wärmeleitgleichung für einen unendlich langen, eindimensionalen Stab (Draht) lautet:

$$u_t(x,t) = k^2 u_{xx}(x,t), \ x \in \mathbb{R}, \ t \in \mathbb{R}_0^+$$

Als Anfangsbedingung zur Zeit t = 0 ist gegeben:

$$u(x,0) = e^{-x^2/\beta^2}, \ x \in \mathbb{R}_0^+, \ \beta \in \mathbb{R}^+$$

Suche die Lösung $u_t(x,t)$ der Gleichung für $x \in \mathbb{R}_0^+$ und $t \in \mathbb{R}_0^+$. Verwende für die Lösung eine geeignete Darstellung.

WIR1