Test in Analysis — Teil 1 \diamondsuit Version dt. \diamondsuit — Type A2 Bu \diamondsuit 1 c

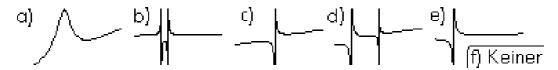
CodeH2F T1A2ap0405-2.TEX

Name, Datum, Klasse

Die Lösungen sind anzukreuzen oder einzukreisen. Richtige Kreuze oder Kreise geben je einen Pluspunkt. Falsche Kreuze oder Kreise geben je einen Minuspunkt.

Probl. 1 Gegeben ist:
$$f(x) = \frac{(-2+x)(-4+x)(2+x)}{(0+x+x^2)}$$

(a) Welcher der folgenden Graphen ist das Bild dieser Funktion?



Lösung deutlich markieren:

a)	b)	c)	d)	e)	f)

(b) Welches sind Nullstellen von f? Lösung deutlich markieren:

Mögliche Nullstellen:	Andere:
$\begin{bmatrix} -4, -3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 2, 3, 3.5, 4 \end{bmatrix}$	

(c) Wo schneidet die Asymptote von f die x-Achse? Lösung deutlich markieren:

Bei $x = \dots$	Keine oder andere Schnittstelle:		
-1.5, -1, -0.5, 0, 0.5, 1, 2, 2.5, 3, 4, 5, 5.5, 6, 7			

Probl. 2 Sei h(x) = x - 2, $g(x) = x^2 - 2$. Damit bilden wir:

$f_1 = g \circ h$	$f_2 = h \circ g$	$f_3 = h \circ (g \circ g)$	$f_4(x) = g \circ (h \circ h)$	$f_5 = h \circ (g \circ h)$	$f_6 = g \circ (h \circ g)$
(1)	(2)	(3)	(4)	(5)	(6)

Ordne, falls möglich, die Nummern der Ausdrücke folgenden Funktionstermen zu (Zahl notieren, falls nicht möglich Kreuz)! Lösung deutlich markieren:

Term	$14 - 8x^2 + x^4$	$-4x^2 + x^4$	$2 - 4x + x^2$	$-4x+x^2$	$14 - 8x + x^2$
Nummer					

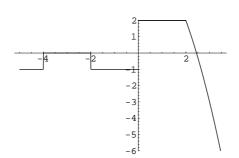
Probl. 3
$$f_1(x) = (2 - x^2) (1 - x^2), f_2(x) = (f_1(x))^{(\frac{1}{2})}, f_3(x) = (f_1(x))^6$$

(a) f_1 hat im Intervall [0,2] folgende Anzahl Nullstellen: (Lösung deutlich markieren)

(b) f_2 resp. f_3 ist im Intervall [0,2] def. resp. zwischen folgenden Nullstellen nicht def.:

f_2 : Nullstellen (Intervall(e)) eintragen:	f_3 : Nullstellen (Intervall(e)) eintragen:

Probl. 4



Das nebenstehende Bild zeigt eine zusammengesetzte Funktion. Bestimme, welche der folgenden Funktionen dafür in Frage kommt:

$$f_1(x) = \begin{cases} -sgn([(\sin(\frac{\pi x}{2}))])^2 & x < 0 \\ 2 & x \in [0, 2] \\ 6 - x^2 & sonst \end{cases} \qquad f_2(x) = \begin{cases} [(\cos(\frac{x}{2}))]^2 & x < 0 \\ 2 & x \in [0, 2] \\ 10 - x^3 & sonst \end{cases}$$

$$f_2(x) = \begin{cases} \left[(\cos(\frac{x}{2})) \right]^2 & x < 0 \\ 2 & x \in [0, 2] \\ 10 - x^3 & sonst \end{cases}$$

$$f_3(x) = \begin{cases} -[x]^2 & x < 0\\ 2^{1.0001} & x \in [0, 2]\\ 4 - x & sonst \end{cases}$$

$$f_4(x) = \begin{cases} 3 & x \in \mathbb{N} \\ 2 & x < 0 \\ x & sonst \end{cases}$$

Richtig	Andere Funktion
$f = f_1$ $f = f_2$ $f = f_3$ $f = f_4$	

 $f(x) = |[x+1]| \cdot \sqrt{|x|} \implies$ Bezeichne die richtigen Aussagen in folgender Liste, nachdem Probl. 5 du den Verlauf der Funktion studiert hast:

- (a) f ist nie negativ.
- (b) f besitzt keine Asyptote.
- (c) f ist periodisch für x < 0.
- (d) Für x > 2 ist f monoton wachsend.
- (e) f ist streng monoton wachsend.
- (f) $f(1) \cdot f(-1) = 0$.
- (g) Für x < -1 ist f beschränkt.
- (h) f besitzt keine Pole.

Richtige Lösungen deutlich markieren:

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)

Projektaufgabe nach mündlicher Mitteilung bis Ende Januar.

Viel Glück!