Vordiplom 1 1994 Klasse E1D – Abteilung Elektrotechnik Mathematik

Zeit inkl. Pause: 0800 – 1200 (180 Minuten)

Restaurierte Version nach dem NeXT-Crash vom Herbst 1999

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung zur Folge.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht akzeptiert.
- \bullet Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.1% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.

10. Oktober 1994

Vordiplomprüfung 1 Mathematik 1994

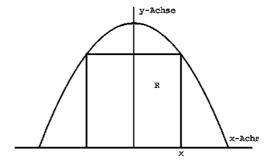
Klasse E1D

Viel Glück!

Aufgabe 1 Analysis (Extremwerte, Inhalte):

(12 Punkte)

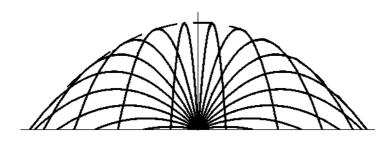
Der durch $y=-x^4+a\ (a>0)$ und die x-Achse gegebenen Kurve wird gemäss Figur unten ein Rechteck R eingeschrieben.



- (a) Berechnen Sie exakt¹ die Seitenlängen und den Inhalt des eingeschriebenen Rechtecks R mit maximalem Flächeninhalt.
- (b) Wie hängt das Verhältnis der Inhalte der Fläche zwischen Kurve und x-Achse und des Rechtecks von a ab?
- (c) Für welches a ist das Rechteck ein Quadrat?

Aufgabe 2 Analysis (Kurven):

(12 Punkte)



¹Z.B. $\sqrt{2}$ oder $2^{\frac{1}{2}}$ statt 1.414.

Ein Wohnzimmerspringbrunnen besteht aus einer grossen Zahl kleiner Wasserstrahlen. In einer vertikalen Schnittebene ((x,y)-Ebene) beobachtet man von einem Zentrum ausgehende Strahlen (vgl. Figur oben) unter verschiedenen Neigungswinkeln α . Alle austretenden Wassertropfen haben dieselbe Startgeschwindigkeit v_0 . Die vom Parameter α abhängigen Kurven $\vec{r}(t) = \binom{x(t)}{y(t)}$ sind unter Vernachlässigung der Lufteinflüsse gegeben durch

$$x(t) = v_0 t \cos(\alpha) \tag{1}$$

$$y(t) = v_0 t \sin(\alpha) - \frac{1}{2} g t^2.$$
 (2)

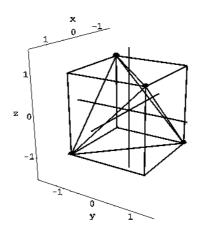
Es sei $v_0 = 1 \frac{m}{sec}$ und $g = 10 \frac{m}{sec^2}$.

- (a) Schreiben Sie bei gegebenem Parameter α die Einzelkurven in der Form y = f(x).
- (b) Bestimmen Sie die Koordinaten des Maximums (x_m, y_m) einer Einzelkurve in Abhängigkeit vom Winkel α .
- (c) Sei C die Kurve, die bestimmt wird durch die Menge der Punkte maximaler Höhe, die von den Wassertropfen erreicht wird. Zeigen Sie, dass C eine Ellipse bildet. Geben Sie die grosse und die kleine Halbachse.

Aufgabe 3 Die beiden Teilaufgaben sind voneinander unabhängig:

(12 Punkte)

(a)



Durch eine Orthonormalbasis $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ (ONB) und einen Ursprung O sei ein Koordinatensystem gegeben. Ein achsenparallel liegender Würfel mit Zentrum im Ursprung O des Koordinatensystems ist bestimmt durch den Eckpunkt $E_4 = (1/1/1)$ (vgl. Figur oben). Dem Würfel ist gemäss Figur ein Tetraeder mit den Ecken E_1 , E_2 , E_3 , E_4 eingeschrieben. Durch eine lineare Abbildung \mathcal{A} des Raumes in sich wird E_1 in E_2 , E_2 in E_3 und E_3 in E_1 übergeführt. E_4 bleibt fix. A sei die Matrix, welche \mathcal{A} bezüglich der ONB $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ beschreibt. A' sei die Matrix, welche \mathcal{A} bezüglich einer ONB $\vec{e_1}'$, $\vec{e_2}'$, $\vec{e_3}'$ beschreibt, deren erster Basisvektor vom Ursprung nach E_4 zeigt.

i. Bestimmen Sie A, A' und $(A')^3$.

- ii. Bestimmen Sie A^{-1} sowie A^2 . Geben Sie zum Vergleich der beiden Matrizen eine geometrische Erklärung ab.
- iii. Bestimmen Sie zu A alle reellen Eigenwerte sowie einen Eigenvektor. Erklären Sie das Resultat geometrisch.
- (b) Die Spur einer (n x n)-Matrix $M=(m_{ij})$ ist definiert durch die Summe ihrer Hauptdiagonalelemente: $Sp(M)=\sum_{i=1}^n m_{ii}$. Beweisen Sie, dass für beliebige (n x n)-Matrizen U und V gilt: Sp(UV)=Sp(VU).

Aufgabe 4 (12 Punkte)

Sei
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$. Damit bildet man die (3 x 3)-Matrix $M = \vec{a} \cdot \vec{b}^t$.

- (a) Zeigen Sie, dass M höchstens den Rang 1 besitzt.
- (b) Beweisen Sie: $det(E + \vec{a} \cdot \vec{b}^t) = 1 + \vec{a}^t \cdot \vec{b}$.
- (c) Seien $\vec{a}=\begin{pmatrix}1\\1\\0\end{pmatrix}$ und $\vec{b}=\begin{pmatrix}0\\\alpha\\1\end{pmatrix}$ speziell gewählt. Berechnen Sie α so, dass die Matrix

 $H=(E+\vec{a}\cdot\vec{b}^t)$ nicht regulär ist. Lösen Sie in diesem Fall die Gleichungssysteme

i.
$$H \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

ii.
$$H \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Aufgabe 5 (12 Punkte)

Es sei

$$K(m) = \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{1 - m^2 \sin^2 t}}, \quad \text{ wobei } m \text{ ein Parameter} \in [0, 1) \text{ ist.}$$

- (a) Geben Sie die Potenzreihenentwicklung von $\frac{1}{\sqrt{1-m^2\sin^2t}}$ in $z:=m^2\sin^2t$ an.
- (b) Benützen Sie die Rekursionsformel

$$\int_{a}^{b} \sin^{n} t \, dt = -\frac{\sin^{n-1} t \cos t}{n} \Big|_{a}^{b} + \frac{n-1}{n} \int_{a}^{b} \sin^{n-2} t \, dt \,, \qquad n \in \mathbf{N},$$

um aus $\frac{1}{\sqrt{1-m^2\sin^2t}}$ eine Potenzreihe für K(m) zu erhalten. (Es genügt, die ersten 5 Terme anzugeben.)

(c) Beweise die Rekursionsformel in 5b.

- (a) i. Lösen Sie die Gleichung $x^6 = 1$ in \mathbb{C} (Skizze!) und geben Sie die Zerlegung in Linearfaktoren von $p(x) = x^6 1$.
 - ii. Zerlegen Sie p(x) in möglichst viele Faktoren mit reellen Koeffizienten.
 - iii. Berechnen Sie den Koeffizienten des Nenners (x-1) in der Partialbruchzerlegung von $\frac{1}{x^6-1}$.
- (b) i. Berechnen Sie

$$\int \frac{dx}{\sin x \cos x} \, .$$

Hinweis: $\frac{1}{\sin x \cos x} = \frac{1}{\cos^2 x \tan x}$.

ii. Berechnen Sie daraus

$$\int \frac{dx}{\sin x} \, .$$

iii. Berechnen Sie

$$\int_0^{\pi/2} (\frac{1}{\sin x} - \frac{1}{x}) dx \,.$$

.