Vordiplom 1, Algebra, 1999 Klasse E1b - Elektrotechnik Mathematik

Zeit inkl. Pause: 08.00 - 11.00 (180 Minuten)

Restaurierte Version nach dem NeXT-Crash vom Herbst 1999

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung zur Folge.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht akzeptiert.
- Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.1% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.
- **Punkte:** Pro Aufgabe sind 12 Punkte möglich, wenn nicht anders vermerkt.
- Ziel: Wenn an einer vollen Prüfung mehr als 6 Aufgaben gegeben sind, können 6 Aufgaben ausgewählt werden, die dann gelöst werden sollten.

Berner Fachhochschule, Hochschule für Technik und Architektur Biel,

21. September 1999

Vordiplomprüfung 1 in Algebra 1999

Klasse E1b

Viel Glück!

Aufgabe 1 (12 Punkte)

Gegeben ist in der komplexen Ebene $\mathbb C$ die Kurve $t\longmapsto z(t)=\sqrt{0.97}\cdot e^{i\cdot t}+(-0.1+0.4\,i),$ $t\in[0,2\,\pi].$ Betrachte dazu noch die komplexe Abbildung $\,\varphi:\,z\longmapsto\varphi(z)=z+\frac{1}{z}.$ Hiermit wird folgendes Bild der Kurve z(t) definiert:

$$\varphi(z(t)) := w(t) = z(t) + \frac{1}{z(t)}$$

- (a) Skizziere die Kurve z(t) in \mathbb{C} . Um welchen Kurventyp handelt es sich?
- (b) Skizziere die Kurve w(t) in \mathbb{C} .

 Hinweis: Dieses Kurvenprofil spielt u.a. in der Aerodynamik eine Rolle, z.B. beim Tragflügel. Es heisst Joukowski-Profil.
- (c) Untersuche, ob es einen Wert $t_0 \in [0, 2\pi]$ gibt, für den der Tangentialvektor an die Kurve w(t) gleich resp. approximativ gleich $\vec{0}$ ist. Bestimme allenfalls t_0 sowie $w(t_0)$ numerisch.

Aufgabe 2 (12 Punkte)

In der Elektrotechnik spielt die Möbiustransformation $\mathbb{C}\ni z\longmapsto w=f(z)=\frac{z-1}{z+1}\in\mathbb{C}$ eine wichtige Rolle. Das Bild des rechtwinkligen Koordinatennetzes der z-Ebene in der w-Ebene heisst Smith-Diagramm.

- (a) Das Bild des rechtwinkligen Koordinatennetzes der z-Ebene in der w-Ebene soll wie folgt dargestellt werden: Skiziere die Bilder der vertikalen Geraden der z-Ebene mit dem Realanteil $x=0,\ 0.2,\ 0.4,\ 1$ sowie die Bilder der horizontalen Halbgeraden mit nicht-negativem Realanteil und Imaginäranteil $i\,y=-2\,i,\ -0.4\,i,\ 0,\ 0.4\,i,\ 2\,i.$ Um welchen Kurventyp handelt es sich bei diesen Bildern?
- (b) Bestimme die Schnittwinkel zwischen den Bildkurven. (Begründung?)
- (c) Untersuche, ob es einen Bildpunkt gibt, der als Schnittpunkt von Bildkurven eine Ausnahme bildet. (Begründung?)

(d) Sei $z_1 = 1 + 2i$. Zeichne $w_1 = f(z_1)$ und $w_2 = f(\frac{1}{z_1})$ in der Skizze ein. Dabei stellt man eine Eigenschaft fest, die ein allgemeines Gesetz vermuten lässt. Formuliere und begründe dieses Gesetz.

Aufgabe 3 (12 Punkte)

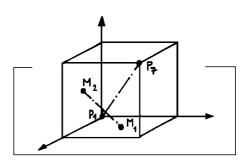
Ein Würfel W_3 mit der Kantenlänge 10 steht so in einem kartesischen Koordinatensystem, dass der Eckpunkt P_1 im Ursprung liegt. Der zweite Punkt auf der Körperdiagonale durch P_1 sei P_7 . Dieser Punkt liegt auf der positiven z-Achse. Weiter liegen die Punkte P_4 und diesem gegenüber P_6 in der xz-Ebene. P_4 hat keine negativen Koordinaten und liegt tiefer als P_6 bezüglich der z-Richtung.

- (a) Untersuche, ob die Lage des Würfels damit eindeutig bestimmt ist. Fertige davon eine Skizze an.
- (b) Berechne die Koordinaten der Eckpunkte von W_3 .
- (c) Sei $B = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 0 & 2 \\ -1 & 2 & 4 \end{pmatrix}$.

 W_3 wird durch B in W_3' abgebildet. Berechne den Inhalt von W_3' sowie die Länge der Seitenvektoren

Aufgabe 4 (12 Punkte)

Der Würfel W_4 liegt achsenparallel. Von W_4 kennt man die Eckpunkte $P_1(0,0,0)$, $P_2(100,100,100)$, $P_4(100,0,0)$



Durch W_4 sollen zwei Löcher mit einem Durchmesser 20 gebohrt werden. Das eine Loch hat als Achse die Raumdiagonale $\overline{P_1P_7}$. Die Achse des anderen Lochs geht vom Flächenmittelpunkt $M_1(50, 50, 0)$ zum Flächenmittelpunkt $M_2(50, 0, 50)$.

- (a) Berechne den minimalen Abstand der beiden Bohrachsen.
- (b) Die kleinste Wandstärke zwischen den beiden Löchern sollte mindestens 1 betragen. Untersuche, ob sich die Löcher durchdringen. Falls dies nicht der Fall ist, soll die kleinste Wandstärke zwischen den beiden Löchern berechnet werden.
- (c) Falls die kleinste Wandstärke w zwischen den beiden Lächern kleiner als 1 ist: Sei $M_2(50,0,50+z)$ variabel. Berechne w als Funktion von z und schätze mittels des Graphen ab, wieviel z betragen müsste, damit w mindestens 1 wird.

Aufgabe 5 (12 Punkte)

- (a) Finde eine kurze Formel für die Summe $2+4+6+8+\ldots+2n, n\in\mathbb{N}$ und beweise diese Formel durch vollständige Induktion.
- (b) Überprüfe damit die bekannte Formel für die Summe $1+2+3+4+\ldots+n, n \in \mathbb{N}$.
- (c) Versuche, durch vollständige Induktion die Beziehung $1+2+3+4+\ldots+n<\frac{1}{8}(2\,n+1)^2$ zu beweisen.

Aufgabe 6 (12 Punkte)

Sei $\langle a_n \rangle_{n \geq 1}$ die FIBONACCI-Folge mit $a_1 = a_2 = 1$, $a_{n+1} = a_n + a_{n-1}$.

(a) Bestimme die Matrix M, für die gilt:

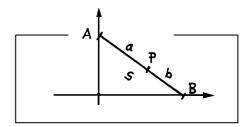
$$\forall_{n\geq 2}: \ \binom{a_{n+1}}{a_n} = M \cdot \binom{a_n}{a_{n-1}}$$

- (b) Berechne exakt die Eigenwerte $\alpha > 0$ und $\beta < 0$ sowie die dazugehörigen Eigenvektoren von M. (Die vereinfachten Werte werden verlangt.)
- (c) Wir definieren mit obigen Eigenwerten die Funktion $f(n) = \frac{1}{\sqrt{5}} (\alpha^n \beta^n)$. Beweise dann:

$$\forall_{n \in \mathbf{N}} : f(n) = a_n$$

Aufgabe 7 (12 Punkte)

Ein Geradenabschnitt der Länge s=a+b wird so verschoben, dass die Endpunkte A und B auf den Koordinatenachsen gleiten. ($a=4,\ b=3$.) Dabei beschreibt der Teilpunkt P eine Kurve. Die Kurvengleichung kann elementargeometrisch gefunden werden.



- (a) Bestimme die Gleichung der durch P erzeugten Kurve und begründe, dass es sich um eine Ellipse handelt.
- (b) Der Ortsvektor eines Punktes P(x,y) der Kurve wird durch die Matrix $A = \frac{1}{3} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ in den Ortsvektor des Punktes P'(x',y') abgebildet. Bestimme die Gleichung der Bildkurve und begründe, um welchen Kurventyp es sich handelt.
- (c) Bestimme die Lage der allfälligen Achsen der Bildkurve.

— ENDE —