Vordiplom 1, Algebra, 2002 Klasse E1a - Elektrotechnik Mathematik

Zeit 180 Minuten

 $WIR2002/604/18/Di\ 10.9.02/0800$

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung zur Folge.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht akzeptiert.
- \bullet Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.1% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.
- Punkte: Pro Aufgabe sind 12 Punkte möglich, wenn nicht anders vermerkt.
- Ziel: Wenn an einer vollen Prüfung mehr als 6 Aufgaben gegeben sind, können 6 Aufgaben ausgewählt werden, die dann gelöst werden sollten.

Berner Fachhochschule, Hochschule für Technik und Architektur Biel,

10. September 2002

Vordiplomprüfung 1 in Algebra 2002

Klasse E1a

Viel Glück!

Aufgabe 1 (12 Punkte)

Ein Würfel steht mit einem Eckpunkt im Ursprung des Koordinatensystems. Seine Raumdiagonale durch diesen Eckepunkt fällt mit der z-Achse zusammen, sodass ein weiterer Eckpunkt auf der positiven z-Achse liegt. Eine weitere Raumdiagonale liegt in der (x,z)-Ebene und schneidet die negative x-Achse. Berechne die Eckpunkte.

Hinweis: Rechne zuerst mit der Kantenlänge 1.

Aufgabe 2 (12 Punkte)

Sei d, h > 0. Durch $P_1(0/0/0)$, $P_2(-1/0/0)$, $P_3(-\frac{1}{2}/d/0)$, $P_4(x_1/y_1/h)$ ist ein reguläres Tetraeder gegeben.

- (a) Berechne x_1, y_1, d und h.
- (b) Zeige die Berechnung des Seiten- resp. Flächenwinkels des Tetraeders mit Vektoren.
- (c) Zeige die Berechnung des Kantenwinkels des Tetraeders mit Vektoren. (Winkel zwischen einer Kante und der durchstossenen Seite).
- (d) Entscheide, ob es mit einer Anzahl regulärer Tetraeder durch Zusammenleimen längs einer Kante gelingt, einen konvexen Körper zu bauen.
- (e) Berechne das Volumen des Tetraeders.

Aufgabe 3 (12 Punkte)

Von einer Matrix M kennt man die Eigenvektoren \vec{x}_1 , \vec{x}_2 , \vec{x}_3 , und die zugehörigen Eigenwerte λ_1 , λ_2 , λ_3 .

Geg.:
$$\vec{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \vec{x}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{x}_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \ \lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = 3$$

- (a) Berechne M exakt.
- (b) Berechne das Bild von $\vec{x}_1 + \vec{x}_2 + \vec{x}_3$.
- (c) Berechne das Urbild von $\vec{x}_1 + \vec{x}_2 + \vec{x}_3$.

Fortsetzung \sim

(d) Berechne das Bild von $\lambda_1^2 \cdot \vec{x}_1 + \lambda_2^2 \cdot \vec{x}_2 + \lambda_3^2 \cdot \vec{x}_3$.

Aufgabe 4

(12 Punkte)

Sei
$$h(z) = -\frac{(-z+1)(z+1)}{(\bar{z}-1)(\bar{z}+1)}$$

- (a) Berechne h(i).
- (b) Berechne $h(\sqrt{\frac{3}{2}} + i\sqrt{\frac{1}{2}}).$
- (c) Untersuche, für welche Punkte $\in \mathbb{C}$ die Gleichung $\Im(h(z))=0$ richtig ist. $\Im \leadsto$ Imaginäranteil . . .
- (d) Skizziere h(i-1), h(i-2), $(h(i-1))^2$, $(h(i-2))^2$.

Aufgabe 5

(12 Punkte)

Gegeben sind die Ebenen:

$$\Phi_1: 4x-2y+5z-6=0, \ \Phi_2: 2x+3y+4z+2=0, \ \Phi_3: -x+y-8z+7=0$$

- (a) Berechne den Schnittpunkt S.
- (b) Sei $\Phi_4(q)$: -6x + 9y q2z 2 = 0

Berechne q so, dass $\Phi_4(q)$ durch S geht.

- (c) Für welche(s) q ist der Abstand zwischen $\Phi_4(q)$ und S gleich 1?
- (d) Für welches q ist der Abstand zwischen $\Phi_4(q)$ und S gleich 10?

Aufgabe 6

(12 Punkte)

- (a) Vereinfache $(5\vec{a} + 2\vec{b}) \times (3\vec{a} 7\vec{b})$ so weit wie möglich.
- (b) Sei $|\vec{a}| = 6$, $|\vec{b}| = 18$, $\langle \vec{a}, \vec{b} \rangle = 12$

Berechne den Winkel zwischen \vec{a} und \vec{b} .

- (c) Berechne mit dem letzten Resultat $|(5\vec{a} + 2\vec{b}) \times (3\vec{a} 7\vec{b})|$.
- (d) Berechne $|(5\,\vec{a}\,+2\,\vec{b})\times(3\,\vec{a}-7\,\vec{b})|$ für $\langle\vec{a},\vec{b}\rangle=k.$