Vordiplom 2, 2003 Klasse B2 Mathematik

Zeit: 180 Minuten

 ${\rm WIR2003/12/RIIc/Mo~8.9.03/0800}$

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung zur Folge.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht akzeptiert.
- \bullet Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.1% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.
- Punkte: Pro Aufgabe sind 12 Punkte möglich, wenn nicht anders vermerkt.
- Ziel: Wenn an einer vollen Prüfung mehr als 6 Aufgaben gegeben sind, können 6 Aufgaben ausgewählt werden, die dann gelöst werden sollten.

Berner Fachhochschule, Hochschule für Technik und Architektur Biel,

8. September 2003

Vordiplomprüfung 2 in Mathematik 2003

Klasse B2

Viel Glück!

Löse die folgenden $\underline{6}$ Aufgaben:

Aufgabe 1 (15 Punkte)

Zeige die Berechnungen der Lösungen von Hand. Erkläre die Schritte:

(a)
$$f(x) = 2x^4 + 5x^0 - 4x^2 + x - \frac{1}{x}$$

i.
$$f'(x) = ?$$

ii.
$$f'(x)|_{x=1} = ?$$

iii.
$$f''(x) = ?$$

(b)
$$f(x) = 2x^4 + 5x^0 - 4x^2 + x - \frac{1}{x}$$

i.
$$\int f(x) dx = ?$$

ii.
$$\int_{1}^{2} f(x) dx = ?$$

(c)
$$f(x) = \frac{1}{\cos(\frac{x}{2} - 1)^2}$$

i.
$$f'(x) = ?$$

ii.
$$\int f(x) dx = ?$$

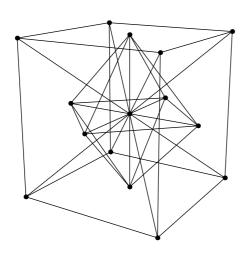
(d)
$$f(x) = \frac{1}{x(x-1)(x+1)}$$

i.
$$\int_{3}^{5} f(x) dx = ?$$

ii.
$$\int_{3}^{\infty} f(x) dx = ?$$

(e)
$$f(x) = 4 \frac{e^x - e^{-x}}{e^{2x}} \rightsquigarrow \int_{\pi}^{e} f(x) dx = ?$$

Aufgabe 2 (12 Punkte)



Gegeben ist ein Würfel der Kantenlänge s=1 mit eingeschriebenem Oktaeder (vgl. Abbildung).

- (a) Leite eine Formel für den Winkel α zwischen zwei Raumdiagonalen des Würfels her und berechne den Winkel.
- (b) Im Würfel ist ein Oktaeder derart eingeschrieben, dass die Oktaederecken mit den Mittelpunkten der Würfelseitenflächen zusammenfallen (vgl. Abbildung oben). Leite eine Formel für den Winkel β zwischen zwei benachbarten Oktaederseitenflächen her und berechne den Winkel.
- (c) Suche eine Beziehung zwischen α und β . Was ist der Zusammenhang zur Dualität von Würfel und Oktaeder?
- (d) Leite folgende Verhältnisse exakt her:
 - i. Inhalt des Volumens des Würfels: Inhalt des Volumens des Oktaeders?
 - ii. Inhalt einer Seitenfläche des Würfels: Inhalt einer Seitenfläche des Oktaeders?

Aufgabe 3 (12 Punkte)

Gegeben ist die Funktion $f_a(x) = (x - a) \cdot x^2$.

- (a) Skizziere die Funktion für $a = 1 \rightsquigarrow f_1(x)$.
- (b) Berechne für beliebiges a den Funktionswert für x = a. Berechne an dieser Stelle dann die Ableitung $f'_a(x)$ sowie den Steigungswinkel der Tangente.
- (c) Wie muss a gewählt werden, so dass der Steigungswinkel der Tangente für x=a im Bogenmass gleich $\pi/4$ ist?
- (d) Berechne für beliebiges a die Lage eines allfälligen relativen Minimums von $(x_1, f_a(x_1))$.
- (e) Berechne für beliebiges a den Flächeninhalt A unter der Kurve von $f_a(x)$ zwischen x = 0 und x = a.
- (f) Was ist bemerkenswert am Verhältnis $A: f_a(x_1)$?

Aufgabe 4 (12 Punkte)

Wir betrachten die Funktionen $g_a(x) = a - x^2$ und $h_a(x) = a - x^4$, a > 0.

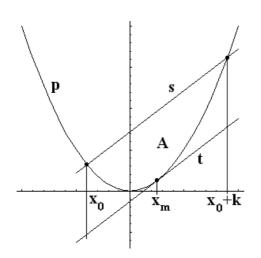
- (a) Berechne die Nullstellen von $g_a(x)$ und $h_a(x)$ und skizziere die Graphen für ein beliebig gewähltes a. (Interessant für die Skizze wäre z.B. die Wahl a = 16.)
- (b) Die Graphen von g_a und h_a werden zwischen ihren jeweiligen Nullstellen um die x-Achse rotiert. Berechne die beiden entstehenden Volumeninhalte V_g und V_h der Rotationskörper.
- (c) Berechne $a=a_0$ so, dass $V_g=V_h$ gilt.
- (d) Berechne das Verhältnis der beiden rotierten Flächeninhalte unter den Kurven von g_a und h_a .

Aufgabe 5 (12 Punkte)

Wir betrachten $f(x, a, b) = x^2 + ax + b$ und dazu $\vec{v}_1(x, a, b) = \begin{pmatrix} x \\ f(x, a, b) \end{pmatrix} \text{ und } \vec{v}_2(x, a, b) = \begin{pmatrix} x + 1 \\ f(x + 1, a, b) \end{pmatrix}.$

- (a) Skizziere f(x, 1, 1) sowie $\vec{v}_1(-0.5, 1, 1)$ und $\vec{v}_2(-0.5, 1, 1)$.
- (b) Berechne das Skalarprodukt $s(x, a, b) := \langle \vec{v}_1(x, a, b), \vec{v}_2(x, a, b) \rangle$.
- (c) Skizziere den Graphen von s(x, 1, 1).
- (d) Suche mit Hilfe der Differentialrechnung allfällige Extrema und Wendepunkte von s(x,1,1).
- (e) Unteruche, ob es einen Wert x so gibt, dass $\vec{v}_1(x,1,1) \perp \vec{v}_2(x,1,1)$ gilt.
- (f) Unteruche, ob es einen Wert x so gibt, dass $\vec{v}_1(x, a, 0) \perp \vec{v}_2(x, a, 0)$ gilt.

Aufgabe 6 (12 Punkte)



Gegeben ist die Funktion $p(x) = a x^2$ sowie die Werte x_0 und k (vgl. Abbildung). Durch die Punkte $P_1(x_0/p(x_0))$ und $P_2((x_0 + k)/p(x_0 + k))$ wird die Gerade $s (\rightarrow \text{ Sehne } \overline{P_1P_2})$ gelegt. Diese hat die Steigung $m = m(x_0)$, welche von der Wahl von x_0 abhängt.

Sei t diejenige Tangente an die Parabel p, die die gleiche Steigung $m = m(x_0)$ hat wie s(x).

- (a) Berechne die Funktionsgleichung der Sehne $s(x) = mx + b = m(x_0)x + b(x_0)$.
- (b) Berechne die Koordinaten des Punktes $P_3(x_m/p(x_m))$ desjenigen Punktes, in dem die Tangente die gleiche Steigung $m = m(x_0)$ wie die Sehne s hat.
- (c) Berechne die Funktionsgleichung der Tangente $t(x) = mx + c = m(x_0)x + c(x_0)$.
- (d) Berechne den Inhalt der eingeschlossenen Fläche A zwischen der Kurve p und der Sehne s (von x_0 bis $x_0 + k$). Untersuche, wie der berechnete Flächeninhalt ändert, wenn x_0 verändert wird.
- (e) Berechne den Inhalt der eingeschlossenen Fläche zwischen der Sehne s und der Tangente t (Trapezfläche T von x_0 bis $x_0 + k$). Untersuche, wie der berechnete Flächeninhalt ändert, wenn x_0 verändert wird.
- (f) Berechne das Verhältnis der Flächeninhalte von T und A. Untersuche, wie das berechnete Verhältnis ändert, wenn x_0 verändert wird.

