Modulprüfung 2 2006 Klasse B 05 / B1 Mathematik

Zeit: 120 Minuten

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung zur Folge.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht akzeptiert.
- \bullet Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.1% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist wenn möglich ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.
- **Punkte:** Pro mit "Aufgabe" bezeichnetes Problem sind 12 Punkte möglich, wenn nicht anders vermerkt oder wenn weitere Angaben fehlen.
- Ziel: Wenn an einer vollen Prüfung mehr als 4 Aufgaben gegeben sind, können 4 Aufgaben ausgewählt werden, die dann gelöst werden sollten.

Berner Fachhochschule, Hochschule für Architektur, Bau und Holz, Fachbereich Bau, Burgdorf, 27. Juni 2006

Modulprüfung in Mathematik 2006

Klasse B 05 / B1

Viel Glück!

Löse die folgenden 4 Aufgaben:

Aufgabe 1 (12 Punkte)

Gegeben sind die Matrizen:

$$A = \begin{pmatrix} 0 & a & -1 \\ 0 & 2 & 2 \\ 3 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, M = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 1 & 2 \\ 4 & 3 & 4 \end{pmatrix}$$

sowie die Gleichung $A \cdot X \cdot B = M$.

- (a) i. Berechne die Determinanten von A, B, M.
 - ii. Was kann man im Falle, wo die Determinante von A ungleich 0 ist, über die Determinante von X sagen?
 - iii. Wann ist die Determinante von A gleich 0?
- (b) Berechne X allgemein in den Fällen, wo die Determinante von A ungleich 0 ist. Stelle dann das Resultat explizit dar für a=3
- (c) Was gilt für die Lösung X im Falle, wo die Determinante von A gleich 0 ist? (Hinweis: Vergleiche $A \cdot X$ und $M \cdot B^{-1}$ elementweise.)

Aufgabe 2 (12 Punkte)

Ein horizontal in eine Wand eingemauerter Träger mit quadratischem Querschnitt $d \cdot d$ und der Länge L ist mit einer konstanten Streckenlast sowie dazu mit einer Gegenkraft am freien Ende belastet. Weiter kennt man die Formel $y''(x) = -\frac{m(x)}{E \cdot I}$, wobei I das axiale Trägheitsmoment und E das Elastizitätsmodul ist.

- (a) Berechne aus dem angegebenen Zusammenhang eine nicht numerische Formel für die Biegelinie, wenn man ein Koordinatensystem mit den Randbedingungen y(0) = 0 und y'(0) = 0 und positivem x sowie y nach unten annimmt mit dem Ursprung an der Mauer.
 - *Hinweis:* Für das von der Streckenlast herrührende Moment ist $-q_1(L-x)^2$, $q_1 = \frac{q}{2}$, zu setzen und für das von der Gegenkraft herrührende Moment $+F_1(L-x)$.
- (b) Es soll jetzt gelten: d=6 cm, L=4 m, $E=210000N/mm^2$. Die Streckenlast rührt von einer totalen Masse von 800 kg her. Die Gegenkraft beträgt 500 N. Berechne mit diesen Angaben die maximale Auslenkung und skizziere die Biegelinie.
- (c) Berechne nun die Tangentensteigung am Ende des gebogenen Balkens in Altgrad.

Aufgabe 3 (12 Punkte)

- (a) Gegeben sind die Vektoren $\vec{v_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 3 \\ 8 \\ 4 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}$ sowie die Faktoren $k_1 = 1$, $k_2 = 4$, $k_3 = -2$
 - i. Berechne die Matrix M, welche $\vec{v_1}$ in $k_1 \cdot \vec{v_1}$, $\vec{v_2}$ in $k_2 \cdot \vec{v_2}$ und $\vec{v_3}$ in $k_3 \cdot \vec{v_3}$ abbildet.
 - ii. Was sind die Eigenwerte und die Eigenvektoren von M?
- (b) Gegeben ist die Matrix $M = \begin{pmatrix} -8 & \frac{9}{2} \\ -24 & 13 \end{pmatrix}$ sowie die Gerade $g: \vec{v}(t) = \begin{pmatrix} 6 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 - i. Berechne die Eigenwerte und Eigenvektoren. Entscheide, ob die Abbildung eine Fixgerade hat, auf der die Punkt alle in sich selbst übergehen.
 - ii. Untersuche, ob es einen Wert t_0 gibt, für den $\vec{v}(t_0) = M \cdot \vec{v}(t_0)$ gilt. Berechne allenfalls $\vec{v}(t_0)$.
 - iii. Berechne die Bilder $M \cdot \vec{v}(0)$ zu $\vec{v}(0)$ und $M \cdot \vec{v}(1)$ zu $\vec{v}(1)$. Damit ist die Bildgerade g_M resp. $M \cdot \vec{v}(t)$ bestimmt. Untersuche nun, ob die Vektoren $M \cdot \vec{v}(0) \vec{v}(0)$ sowie $M \cdot \vec{v}(1) \vec{v}(1)$ oder allgemein $M \cdot \vec{v}(t) \vec{v}(t)$ etwas mit den Eigenvektoren zu tun haben.

Aufgabe 4 (12 Punkte)

Gegeben sind die Vektoren $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \vec{a} = \begin{pmatrix} 3 \\ 8 \\ 4 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}$ sowie die Gerade $g: \ \vec{v}_g(t) = \begin{pmatrix} 6 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{u} \leadsto \ \text{Projektionsrichtung}, \{\lambda \, \vec{a} + \mu \, \vec{b}\} \leadsto \ \text{Ebene}.$

- (a) Projiziere die Gerade g auf die durch den Ursprung und die Vektoren \vec{a} und \vec{b} definierte Ebene Φ , indem du die Punkte resp. Vektoren $\overrightarrow{OP_1} = \vec{v}_g(0)$ und $\overrightarrow{OP_2} = \vec{v}_g(1)$ auf Φ projizierst \sim Gerade g', Punkte P_1' , P_2' . (Nur die beiden Punkte sind zu berechnen.)
- (b) Drehe anschliessend die Gerade g mit Hilfe der gewonnenen Punkte um $+30^o$ um die z-Achse \rightsquigarrow (Gerade g'', Punkte P_1'', P_2''). (Nur die beiden Punkte sind zu drehen.)
- (c) Berechne und vergleiche die Abstände von g, g' und g'' vom Ursprung.
- (d) P_1', P_2', P_1'', P_2'' spannen ein Tetraeder auf. Berechne das Volumen.

Aufgabe 5 (6 Punkte)

Zusatz: (Falls eine der regulären Aufgaben nicht gelöst werden kann.)

Sei
$$M = \begin{pmatrix} -16 & 17 & -16 \\ -48 & 58 & -64 \\ -24 & 31 & -36 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Berechne das Polynom $p(\lambda) = \det(M \lambda E)$.
- (b) Ersetzt anschliessend alle Koeffizienten a_k durch $(a_k \cdot E)$ sowie λ durch M. Dabei ist λ^3 durch $M \cdot M \cdot M := M^3$ und λ^2 durch $M \cdot M = M^2$ zu ersetzen. Berechne den entstehenden Ausdruck. (*Hinweis*: Es muss eine spezielle Matrix herauskommen.)

