Modulprüfung 2008 Klasse M+E 07 / M+E 1 Mathematik

Zeit: 120 Minuten

Teil 1: 30 Minuten, dann Abgabe

Teil 2: 90 Minuten

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung zur Folge.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht akzeptiert.
- \bullet Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.1% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist wenn möglich ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.
- **Punkte:** Pro mit "Aufgabe" bezeichnetes Problem sind 12 Punkte möglich, wenn nicht anders vermerkt oder wenn weitere Angaben fehlen.
- Ziel: Wenn an einer vollen Prüfung mehr als 4 Aufgaben gegeben sind, können 4 Aufgaben ausgewählt werden, die dann gelöst werden sollten.

Berner Fachhochschule, Hochschule für Technik und Informatik, Fachbereich Elektrotechnik und Fachbereich Maschinenbau, Burgdorf,

31. Januar 2008

Modulprüfung in Mathematik 2008

M+E 07 / M+E 1

Teil 1: Ohne Hilfsmittel, Zeitrahmen 30 Minuten, dann Abgabe

Viel Glück!

Löse die nachfolgenden Kurzaufgaben. (Alle Teilaufgaben werden gleich bewertet.)

Hinweis: Erwartet wird, dass man in der gegebenen Zeit ca. 3/4 der Teilaufgaben richtig lösen kann. Es können auch mehr sein. Wähle daher mit Bedacht diejenigen Aufgaben, die du am schnellsten lösen kannst.

Probl. 1 Angaben:

$$M_{1} = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 4 & 0 & 4 \end{pmatrix}, \quad M_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \\ 0 & 1 & 4 \end{pmatrix}, \quad M_{3} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}, \quad b_{1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad b_{2} = \begin{pmatrix} 8 \\ 0 \\ -8 \end{pmatrix},$$

$$z_{1} = 3 + 2i, \quad z_{2} = 1 - i$$
(a)
$$Berechne \det(M_{1})$$
(b)
$$Berechne \det(M_{1})$$
(c)
$$Berechne \det(M_{2})$$
(d)
$$Berechne \det(M_{1} \cdot M_{2})$$
(d)
$$Berechne M_{1} \cdot M_{2}$$
(e)
$$Berechne M_{2} \cdot M_{1}$$
(f)
$$C$$
(3 Punkte)
$$C$$
(3 Punkte)
$$C$$
(3 Punkte)
$$C$$
(4 Punkte)
$$C$$
(5 Punkte)
$$C$$
(6 Punkte)
$$C$$
(7 Punkte)
$$C$$
(8 Punkte)
$$C$$
(9 C)
$$C$$
(9 Punkte)
$$C$$
(1 Punkte)
$$C$$
(1 Punkte)
$$C$$
(2 Punkte)
$$C$$
(3 Punkte)

(h)
$$\text{Löse } (M_2 \cdot M_1) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (\vec{b}_2^T \cdot M_2^T)^T$$
(i)
$$\text{Berechne } M_3^{-1}$$
(j)
$$\text{Berechne } \frac{1}{z_1 z_2}$$
(k)
$$\text{Berechne } \frac{1}{\bar{z}_1 \bar{z}_2}$$
(l)
$$\text{Berechne } \frac{1}{\bar{z}_1 \bar{z}_2}$$
(l)
$$\text{Was ist der MATLAB-Output für den folgenden Befehl?}$$

$$4*(1:5)*10$$
(Bitte Output so notieren, wie er auf dem Bildschirm erscheinen wird.)
(m)
$$\text{(3 Punkte)}$$
Was ist der MATLAB-Output für den folgenden Befehl?}
$$rem(70,12)$$
(Bitte Output so notieren, wie er auf dem Bildschirm erscheinen wird.)
(n)
$$\text{(3 Punkte)}$$
Was ist der MATLAB-Output für die folgende Befehlsequenz?}
$$g=j+3; \text{ imag}(g)*conj(g)$$
(Bitte Output so notieren, wie er auf dem Bildschirm erscheinen wird.)
(o)
$$\text{(3 Punkte)}$$
Was ist der MATLAB-Output für die folgende Befehlsequenz?}
$$a=[1 2 3 4]; b=[a',2*a']$$
(Bitte Output so notieren, wie er auf dem Bildschirm erscheinen wird.)
(p)
$$\text{(3 Punkte)}$$
Was ist der MATLAB-Output für die folgende Befehlsequenz?}
$$a=[1 2 3 4]; b=[a',2*a']; b*b'$$
(Bitte Output so notieren, wie er auf dem Bildschirm erscheinen wird.)

Berner Fachhochschule, Hochschule für Technik und Informatik, Fachbereich Elektrotechnik und Fachbereich Maschinenbau, Burgdorf,

31. Januar 2008

Modulprüfung in Mathematik 2008

M+E 07 / M+E 1

Teil 2: Zeitrahmen 90 Minuten

Viel Glück!

Löse die nachfolgenden Aufgaben. (Alle Teilaufgaben werden gleich bewertet.)

Probl. 2 (18 Punkte)

Eine Ebene Φ ist gegeben durch den Normalenvektor \vec{n} , $\vec{n}^T = (2, 5, 1)$. Die Ebene geht zudem durch den Punkt $P_0(1, 1, -1)$. Weiter kennt man die Punkte $P_1(2, 0, 2)$ und $P_2(3, 2, 1)$.

- (a) Berechne den Flächeninhalt des Dreiecks $\triangle P_0 P_1 P_2$
- (b) Bestimme die Hess'sche Normalform von Φ .
- (c) Untersuche, welcher der Punkte P_1, P_2 in Φ liegt.
- (d) Bestimme allenfalls den Abstand von P_2 zu Φ .
- (e) Bestimme den Schnittpunkt S der Gerade $q = \overline{OP_2}$ mit Φ .
- (f) Man drehe die Gerade g um die z-Achse um den Winkel φ . Die gedrehte Gerade nennen wir g_{φ} . Bestimme φ so, dass der Abstand von $S_{\varphi} = g_{\varphi} \cap \Phi$ zu O minimal ist. (Skizze!)

Probl. 3 (18 Punkte)

Sei
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- (a) Berechne $A \cdot A$ und $B \cdot B$. Versuche daraus allgemeine Gesetze für derartige $n \times n$ -Matrizen abzulesen.
- (b) Berechne $A \cdot A \cdot A$ und $B \cdot B \cdot B$. Versuche daraus allgemeine Gesetze für entsprechende $n \times n$ -Matrizen abzulesen.
- (c) Berechne $A \cdot B$, $B \cdot A$, $A \cdot A \cdot B \cdot B$ und $A \cdot A \cdot A \cdot B \cdot B$. Versuche daraus allgemeine Gesetze für entsprechende $n \times n$ -Matrizen abzulesen.
- (d) Berechne $A^{-1} \cdot B^{-1}$ und $B^{-1} \cdot A^{-1}$. Ist die Formel $A^{-1} \cdot B^{-1} = B^{-1} \cdot A^{-1}$ hier richtig?
- (e) Löse die Gleichung (d.h. berechne X):

$$A \cdot B \cdot A = B \cdot X \cdot B$$

(f) Löse die Gleichung (d.h. berechne X):

$$(B^{-1} - A^{-1}) \cdot X = A + B$$

Probl. 4 (20 Punkte)

(a) i. Berechne die 3. komplexen Einheitswurzeln z_1, z_2 und z_3 exakt. D.h. bestimme die Lösungen der Gleichung $z^3 = 1$. Skizziere die Löungen in einem Diagramm in \mathbb{C}

- ii. Sei $w_i = z_i + k$, k = const. Berechne das Polynom $p(z) = (z w_1)(z w_2)(z w_3)$.
- iii. Setze k=2 und berechne das Polynom $p(z)=(z-w_1)(z-w_2)(z-w_3)$ für dieses spezielle k. Trage w_1,w_2,w_3 ebenfalls in das Diagramm ein.
- iv. Setze k = 2 + 4i und berechne das Polynom $p(z) = (z w_1)(z w_2)(z w_3)$ für dieses spezielle k. Trage w_1, w_2, w_3 ebenfalls in das Diagramm ein.
- v. Worin unterscheiden sich die Koeffizienten bezüglich ihrer Zahlenart, wenn man einerseits k=2 und andererseits $k=2+4\,i$ setzt?
- (b) i. Berechne die Partialbruchzerlegung von $q(x) = \frac{4x^4 + 3x^3 + 2x^2 + x}{(x-1)(x^2+1)} = \frac{d(x)}{n(x)}$
 - ii. Die Nullstellen von $n(x) = (x-1)(x^2+1) = x^3 x^2 + x 1$ definieren in \mathbb{C} ein Dreieck Δ_1 . Berechne diese Nullstellen und skizziere das Dreieck Δ_1 .
 - iii. Berechne das Vehältnis von Dreiecksinhalt zu Umfang.
 - iv. Berechne die Inversen der vorhin berechneten Nullstellen. Diese definieren wieder Dreieck \triangle_2 . Was ist das Verhältnis des Inhalts von \triangle_1 zu Inhalt von \triangle_2 ?
 - v. Zwei der eben berechneten Nullstellen haben einen nicht negativen Imaginäranteil. Wenn man zu diesen Nullstellen k=2 addiert, erhält man die Zahlen w_1 und w_2 . Durch w_1 und w_2 geht eine Gerade (in die Skizze eintragen!). Diese Gerade kann man um den Ursprung um einen positiven Winkel φ soweit drehen, dass das Bild parallel zur reellen Achse zu liegen kommt. Berechne den dazu notwendigen Winkel φ .

Probl. 5 Zusatzaufgabe (wenn alle andern Aufgaben gelöst sind) (9 Punkte)

- (a) An den Stelle 10 und -10 auf der x-, der y- und z-Achse eines kartesischen Koordinatensystems wird je ein Punkt gesetzt. Diese Punkte bestimmen ein Oktaeder. In dieses Oktaeder wird achsenparallel der grösste mögliche Würfel hineingesetzt. Bei diesem Würfel wird eine Ecke P₀ ausgewählt. Von P₀ aus werden drei Strahlen durch die Mittelpunkte P₁, P₂ P₃ der drei zu P₀ gegenüberliegenden Würfelseiten gezogen. P₀, P₁, P₂ P₃ bilden ein nichtreguläres Tetraeder. Wieviele Prozent des Würfelvolumens werden vom Tetraeder eingenommen?
- (b) Wieviele Prozent der Würfeloberfläche macht die Tetraederoberfläche aus?
- (c) Sei k_1 das Verhältnis vom gesamten Würfelvolumen zum Tetraedervolumen, k_2 das Verhältnis der Würfeloberfläche zur Tetraederoberfläche. Berechne $k_1 : k_2$.