Modulprüfung 2011 Klasse B 10 / B1 Mathematik

Zeit: 120 Minuten

Bedingungen:

- Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat einen sofortigen Ausschluss von der Prüfung (Note F) zur Folge. Speziell dürfen mobile Telefone und PDA's nicht ins Prüfungszimmer mitgebracht werden.
- Für die Schrift ist dokumentechtes Schreibgerät zu verwenden. Bleistift wird nur bei allfälligen Zeichnungen und Skizzen akzeptiert.
- Es wird eine saubere und klare Darstellung des Lösungsweges mit Angabe von Ideen und Zwischenresultaten verlangt. Resultate ohne Herleitung werden nicht als Gesamtlösung akzeptiert.
- Bei Verwendung von Dezimalbrüchen darf die Abweichung der Schlussresultate vom exakten Resultat nicht mehr als 0.01% betragen.
- Physikalische Einheiten dürfen generell weggelassen werden, sofern nicht anders vermerkt.
- Resultate sind doppelt zu unterstreichen.
- Ungültige Teile sind sauber durchzustreichen.
- Pro Aufgabe ist wenn möglich ein neues Blatt zu verwenden. Die Rückseiten der Schreibblätter müssen leer bleiben. Sie werden vielleicht nicht korrigiert!
- Erlaubte Hilfsmittel: Kursunterlagen (Kurzfassung), Formelbücher, Taschenrechner, Schreibpapier und Schreibzeug.
- Punkte: Pro mit "Aufgabe" bezeichnetes Problem ist die angegebene Anzahl von Punkten möglich.
- ullet Ziel: Wenn an einer vollen Prüfung mehr als die bezeichnete Anzahl n Aufgaben gegeben sind, können n Aufgaben ausgewählt werden, die dann gelöst werden sollten.

Berner Fachhochschule, Hochschule für Architektur, Bau und Holz, Fachbereich Bau, Burgdorf, 06.09.2011

Modulprüfung in Mathematik 2011

Klasse B 10 / B1

Viel Glück!

Erwartet werden die Lösungen von etwa 4 bis 5 Aufgaben aus der folgenden Serie. Alle Teilaufgaben einer Aufgabe geben gleichviele Punkte (je 3).

Aufgabe 1 (27 Punkte)

Gegeben ist die Matrix $M = \begin{pmatrix} 2 & -2 & 3 \\ -3 & 1 & 3 \\ -2 & -1 & 2 \end{pmatrix}$.

- (a) Berechne die Determinante der Matrix M sowie diejenige von M+M.
- (b) Begründe damit, ob die Inverse M^{-1} der Matrix existiert.
- (c) Berechne die inverse Matrix M^{-1} , falls sie existiert.
- (d) Berechne die Inverse der Matrix M^T , falls sie existiert.
- (e) Gibt es eine Beziehung zwischen M^{-1} und $(M^T)^{-1}$? Wenn ja, welche?
- (f) Berechne exakt die Determinante von: $M^{-1}\cdot M^{-1}\cdot M^{-1}\cdot M^{-1}\cdot M^{-1}\cdot M^{-1}\cdot M^{-1}:=(M^{-1})^7$
- (g) Bilde den Punkt $P_0(2,5,8)$ mittles M in P_1 ab, d.h. bilde den Vektor $\overrightarrow{OP_0}$ in $\overrightarrow{OP_1}$ ab. Bilde danach P_0 mittles M^{-1} in P_2 ab. Berechne P_1 und P_2 sowie $|\overline{P_1P_2}|$.
- (h) Berechne nun diejenige Matrix in Zahlen und auch abstrakt, welche P_2 in P_1 abbildet.
- (i) Berechne die vorhandenen reellen Eigenwerte λ_k und die zugehörigen Eigenvektoren (numerisch, mit z=1).

Aufgabe 2 (27 Punkte)

Gegeben ist die Funktion

$$f(x) = \frac{(2e^{-(x-4)^2}) - 1}{x(x+5)}, \quad I = D_f = [-7, 7].$$

- (a) Erstelle eine saubere Skizze des Graphen im Intervall I.
- (b) Bestimme den Steigungswinkel des Graphen für x = -1 und Zeichne diesen Winkel in die Skizze ein.
- (c) Bestimme Nullstellen und Polstellen im Intervall I und zeichne diese Stellen in die Skizze ein.
- (d) Bestimme rechnerisch die Extremwertstellen im Intervall I und zeichne diese Stellen in die Skizze ein.

- (e) Bestimme rechnerisch die Wendepunkte im Intervall I, falls vorhanden, und zeichne diese Stellen in die Skizze ein.
- (f) Bestimme die Grenzwerte von f(x) für $x \to \infty$ und für $x \to -\infty$.
- (g) Bestimme numerisch die Approximation von f durch das Taylorpolynom $p_{4,3}(x) = P_3(x-4)$ vom Grade 3 mit dem Zentrum $x_0 = 4$.
- (h) Berechne damit numerisch $A_1 = \int_3^5 p_{4,3}(x) dx$.
- (i) Sei $A_2 = \int_3^5 f(x) dx$. Ermittle die ersten 4 Ziffern von $d = |A_2 A_1|$.

Aufgabe 3 (12 Punkte)

Gegeben sind mit $x \in [x_1, x_2] = [0, \pi]$ und $y \in [y_1, y_2] = [0, \frac{3\pi}{2}]$ die 3 Funktionen:

$$f_1(x,y) = \cos(x+y)$$

$$f_2(x,y) = \cos(x) + \sin(y)$$

$$f_3(x,y) = \cos(x)\sin(y)$$

- (a) Skizziere die zugehörigen 3D-Graphen.
- (b) Berechne $A_1(y) = \int_{x_1}^{x_2} f_1(x, y) dx$, $A_2(y) = \int_{x_1}^{x_2} f_2(x, y) dx$ sowie $A_3(y)$ entsprechend.
- (c) Berechne $V_1 = \int_{y_1}^{y_2} A_1(y) \, dy = \int_{y_1}^{y_2} \int_{x_1}^{x_2} f_1(x, y) \, dx \, dy$ sowie V_2 und V_3 entsprechend.
- (d) Untersuche rechnerisch, wo $f_2(x, y)$ im gegebenen Bereich minimal ist.

Aufgabe 4 (12 Punkte)

Mit Hilfe von 4 Stangen mit je einer Länge von 4m wird ein pyramidenförmiges Zelt über einem quadratischen Grundriss errichtet, das die Seitenlänge x_4 an der Basis aufweist. Zu diesem Zweck werden die 4 Stangen in die Ecken des Quadrates gestellt und oben, das heisst über der Mitte des Grundrissquadrates, an den Stangenenden zusammengebunden.

- (a) Bestimme mit Hilfe der Differentialrechnung wie gross x_4 gewählt werden muss, damit das Zelt einen maximalen Volumeninhalt V_4 aufweist.
- (b) Berechne V_4 numerisch.
- (c) Bestimme mit Hilfe der Differentialrechnung wie gross entsprechend x_3 gewählt werden muss, damit das Zelt einen maximalen Volumeninhalt V_3 aufweist, wenn die Zeltform diesmal ein nicht reguläres Tetraeder darstellt mit 3 gleichschenkligen Dreiecken als Seitenflächen, d.h. wenn also nur drei Stangen oben zusammengebunden sind.
- (d) Berechne V_3 numerisch.

Aufgabe 5 (12 Punkte)

Gegeben ist die Funktion $f(x) = \frac{1}{2}(x-2)(x+3)e^x$.

- (a) Berechne die kürzeste Distanz des Punktes P(2; 2) zum Graphen von f.
- (b) Berechne¹ die Länge der Kurve $h(x) = f(x) \cdot e^x$, $x \in [0, 2]$.
- (c) Berechne¹ die Länge der Kurve $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{s}(t) = \begin{pmatrix} t \\ t^2 \\ \sqrt{1+t} \end{pmatrix}, \ t \in [0,\,2].$
- (d) Berechne die Länge der kürzesten Verbindung der Geraden

$$g: \vec{v}(t) = \begin{pmatrix} -1\\2\\-3 \end{pmatrix} + t \begin{pmatrix} 0\\1\\-2 \end{pmatrix} \text{ und } q: \vec{w}(s) = \begin{pmatrix} 0\\-2\\1 \end{pmatrix} + (s+1) \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

Aufgabe 6 (21 Punkte)

Gegeben sind die drei Vektoren $\vec{a} = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \ \vec{c} = \vec{a} \times \vec{b}$. Diese Vektoren sind Eigenvektoren einer Matrix M mit den Eigenwerten $\lambda_a = 2, \ \lambda_b = -1, \ \lambda_c = 3$.

- (a) Berechne die Matrix M.
- (b) Löse die Gleichung $M \cdot M M^T \cdot X \cdot M + M = E$. (D.h. berechne X.)
- (c) Wir schreiben: $M \cdot M := M^2$, $M^2 \cdot M := M^3$ usw. und sei $Q = ((M^{-1})^{50})^T$. Berechne $10^{39} \cdot \det(Q)$.
- (d) Sei $U = M^5$. Berechne das Bild $U \cdot \vec{v}$ des Vektors $\vec{v} = \vec{b} + x \cdot \vec{b} x^2 \cdot \vec{b} x^3 \cdot \vec{b}$.
- (e) Sei $D(\varphi, z)$ = Drehmatrix, die einen Vektor um die z-Achse um den Winkel φ dreht, wobei bei positivem φ die positive x-Achse in Richtung positive y-Achse gedreht wird. Schreibe $D(\varphi, z)$ als 3×3 -Matrix auf.
- (f) Berechne die Eigenwerte von $M^{-1} \cdot D(\varphi, z) \cdot M$. Für welche φ sind diese reell?
- (g) Der Ursprung O sowie die Vektoren \vec{a} und \vec{b} bilden eine Ebene Φ . Berechne die Spiegelungsmatrix S für die Spiegelung an Φ und bestimme damit den Bildpunkt von \vec{A} mit $\vec{OA} = \vec{e_1} + \vec{e_2} + \vec{e_3}$.

¹Exakt oder, falls die Rechnerleistung ausreicht, numerisch.

Aufgabe 7 (9 Punkte)

Gegeben sind die Funktionen

 $f(x) = x \cdot \cos((x+x^2) \cdot \pi) - x \cdot x^x$ und $h(x) = 2x \cdot \sin(x^2+1) + x \cdot e^{2x^2} + \cos(x) - x \sin(x)$. Berechne nachvollziehbar **von Hand**:

- (a) Die Ableitung f'(x).
- (b) Die exakte Steigung sowie den Steigungswinkel α des Graphen von f für x=1.
- (c) Die Stammfunktion von h.

